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ABSTRACT

This is an account of what I have learned (so far) about the application of statistics to 
psychology and the other sociobiomedical sciences. It includes the principles "less is more" 
(fewer variables, more highly targeted issues, sharp rounding off), "simple is better" 
(graphic representation, unit weighting for linear composites), and "some things you learn 
aren't so." I have learned to avoid the many misconceptions that surround Fisherian null 
hypothesis testing. I have also learned the importance of power analysis and the 
determination of just how big (rather than how statistically significant) are the effects that 
we study. Finally, I have learned that there is no royal road to statistical induction, that the 
informed judgment of the investigator is the crucial element in the interpretation of data, 
and that things take time. 

This invited address was presented to the Division of Evaluation, Measurement, and Statistics (Division 
5) at the 98th Annual Convention of the American Psychological Association in Boston, August 13, 1990. 
I am greateful for the comments on a draft provided by Patricia Cohen, Judith Rabkin, Raymond Katzell, 
and Donald F. Klein. 
Correspondence may be addressed to Jacob Cohen, Department of Psychology, New York University, 6 
Washington Pl. 5th Floor, New York, NY, 10003. 

What I have learned (so far) has come from working with students and colleagues, from experience 
(sometimes bitter) with journal editors and review committees, and from the writings of, among others, 
Paul Meehl, David Bakan, William Rozeboom, Robyn Dawes, Howard Wainer, Robert Rosenthal, and 
more recently, Gerd Gigerenzer, Michael Oakes, and Leland Wilkinson. Although they are not always 
explicitly referenced, many of you will be able to detect their footprints in what follows. 

Some Things You Learn Aren't So 

One of the things I learned early on was that some things you learn aren't so. In graduate school, right 
after World War II, I learned that for doctoral dissertations and most other purposes, when comparing 
groups, the proper sample size is 30 cases per group. The number 30 seems to have arisen from the 
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understanding that with fewer than 30 cases, you were dealing with "small" samples that required 
specialized handling with "small-sample statistics" instead of the critical-ratio approach we had been 
taught. Some of us knew about these exotic small-sample statistics–in fact, one of my fellow doctoral 
candidates undertook a dissertation, the distinguishing feature of which was a sample of only 20 cases per 
group, so that he could demonstrate his prowess with small-sample statistics. It wasn't until some years 
later that I discovered (mind you, not invented) power analysis, one of whose fruits was the revelation 
that for a two-independent-group-mean comparison with n = 30 per group at the sanctified two-tailed .05 
level, the probability that a medium-sized effect would be labeled as significant by the most modern 
methods (a t test) was only .47. Thus, it was approximately a coin flip whether one would get a significant 
result, even though, in reality, the effect size was meaningful. My n = 20 friend's power was rather worse 
(.33), but of course he couldn't know that, and he ended up with nonsignificant results–with which he 
proceeded to demolish an important branch of psychoanalytic theory. 

Less Is More 

One thing I learned over a long period of time that is so is the validity of the general principle that less is 
more , except of course for sample size ( Cohen & Cohen, 1983 , pp. 169—171). I have encountered too 
many studies with prodigious numbers of dependent variables, or with what seemed to me far too many 
independent variables, or (heaven help us) both. 

In any given investigation that isn't explicitly exploratory, we should be studying few independent 
variables and even fewer dependent variables, for a variety of reasons. 

If all of the dependent variables are to be related to all of the independent variables by simple bivariate 
analyses or multiple regression, the number of hypothesis tests that will be performed willy-nilly is at 
least the product of the sizes of the two sets. Using the .05 level for many tests escalates the 
experimentwise Type I error rate–or in plain English, greatly increases the chances of discovering things 
that aren't so. If, for example, you study 6 dependent and 10 independent variables and should find that 
your harvest yields 6 asterisks, you know full well that if there were no real associations in any of the 60 
tests, the chance of getting one or more "significant" results is quite high (something like 1 − .95 60 , 
which equals, coincidentally, .95), and that you would expect three spuriously significant results on the 
average. You then must ask yourself some embarrassing questions, such as, Well, which three are real?, 
or even, Is six significant significantly more than the chance-expected three? (It so happens that it isn't.) 

And of course, as you've probably discovered, you're not likely to solve your multiple tests problem with 
the Bonferroni maneuver. Dividing .05 by 60 sets a per-test significance criterion of .05/60 = 0.00083, 
and therefore a critical two-sided t value of about 3.5. The effects you're dealing with may not be large 
enough to produce any interesting t s that high, unless you're lucky. 

Nor can you find salvation by doing six stepwise multiple regressions on the 10 independent variables. 
The amount of capitalization on chance that this entails is more than I know how to compute, but 
certainly more than would a simple harvest of asterisks for 60 regression coefficients ( Wilkinson, 1990 , 
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p. 481). 

In short, the results of this humongous study are a muddle. There is no solution to your problem. You 
wouldn't, of course, write up the study for publication as if the unproductive three quarters of your 
variables never existed. ... 

The irony is that people who do studies like this often start off with some useful central idea that, if 
pursued modestly by means of a few highly targeted variables and hypotheses, would likely produce 
significant results. These could, if propriety or the consequences of early toilet training deemed it 
necessary, successfully withstand the challenge of a Bonferroni or other experimentwise-adjusted alpha 
procedure. 

A special case of the too-many-variables problem arises in multiple regression—correlation analysis with 
large numbers of independent variables. As the number of independent variables increases, the chances 
are that their redundancy in regard to criterion relevance also increases. Because redundancy increases the 
standard errors of partial regression and correlation coefficients and thus reduces their statistical 
significance, the results are likely to be zilch. 

I have so heavily emphasized the desirability of working with few variables and large sample sizes that 
some of my students have spread the rumor that my idea of the perfect study is one with 10,000 cases and 
no variables. They go too far. 

A less profound application of the less-is-more principle is to our habits of reporting numerical results. 
There are computer programs that report by default four, five, or even more decimal places for all 
numerical results. Their authors might well be excused because, for all the programmer knows, they may 
be used by atomic scientists. But we social scientists should know better than to report our results to so 
many places. What, pray, does an r = .12345 mean? or, for an IQ distribution, a mean of 105.6345? For N 
= 100, the standard error of the r is about .1 and the standard error of the IQ mean about 1.5. Thus, the 
345 part of r = .12345 is only 3% of its standard error, and the 345 part of the IQ mean of 105.6345 is 
only 2% of its standard error. These superfluous decimal places are no better than random numbers. They 
are actually worse than useless because the clutter they create, particularly in tables, serves to distract the 
eye and mind from the necessary comparisons among the meaningful leading digits. Less is indeed more 
here. 

Simple Is Better 

I've also learned that simple is better, which is a kind of loose generalization of less is more. The simple-
is-better idea is widely applicable to the representation, analysis, and reporting of data. 

If, as the old cliché has it, a picture is worth a thousand words, in describing a distribution, a frequency 
polygon or, better still, a Tukey (1977, pp. 1—26) stem and leaf diagram is usually worth more than the 
first four moments, that is, the mean, standard deviation, skewness, and kurtosis. I do not question that the 
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moments efficiently summarize the distribution or that they are useful in some analytic contexts. Statistics 
packages eagerly give them to us and we dutifully publish them, but they do not usually make it possible 
for most of us or most of the consumers of our products to see the distribution. They don't tell us, for 
example, that there are no cases between scores of 72 and 90, or that this score of 24 is somewhere in left 
field, or that there is a pile-up of scores of 9. These are the kinds of features of our data that we surely 
need to know about, and they become immediately evident with simple graphic representation. 

Graphic display is even more important in the case of bivariate data. Underlying each product—moment 
correlation coefficient in an acre of such coefficients there lies a simple scatter diagram that the r 
presumes to summarize, and well it might. That is, it does so if the joint distribution is more-or-less 
bivariate normal–which means, among other things, that the relationship must be linear and that there are 
no wild outlying points. We know that least squares measures, like means and standard deviations, are 
sensitive to outliers. Well, Pearson correlations are even more so. About 15 years ago, Wainer and 
Thissen (1976) published a data set made up of the heights in inches and weights in pounds of 25 
subjects, for which the r was a perfectly reasonable .83. But if an error in transcription were made so that 
the height and weight values for one of the 25 subjects were switched, the r would become — .26, a 
rather large and costly error! 

There is hardly any excuse for gaps, outliers, curvilinearity, or other pathology to exist in our data 
unbeknownst to us. The same computer statistics package with which we can do very complicated 
analyses like quasi-Newtonian nonlinear estimation and multidimensional scaling with Guttman's 
coefficient of alienation also can give us simple scatter plots and stem and leaf diagrams with which we 
can see our data. A proper multiple regression/correlation analysis does not begin with a matrix of 
correlation coefficients, means, and standard deviations, but rather with a set of stem and leaf diagrams 
and scatter plots. We sometimes learn more from what we see than from what we compute; sometimes 
what we learn from what we see is that we shouldn't compute, at least not on those data as they stand. 

Computers are a blessing, but another of the things I have learned is that they are not an unmixed 
blessing. Forty years ago, before computers (B.C., that is), for my doctoral dissertation, I did three factor 
analyses on the 11 subtests of the Wechsler-Bellevue, with samples of 100 cases each of psychoneurotic, 
schizophrenic, and brain-damaged patients. Working with a pad and pencil, 10-to-the-inch graph paper, a 
table of products of two-digit numbers, and a Friden electromechanical desk calculator that did square 
roots "automatically," the whole process took the better part of a year. Nowadays, on a desktop computer, 
the job is done virtually in microseconds (or at least lickety-split). But another important difference 
between then and now is that the sheer laboriousness of the task assured that throughout the entire process 
I was in intimate contact with the data and their analysis. There was no chance that there were funny 
things about my data or intermediate results that I didn't know about, things that could vitiate my 
conclusions. 

I know that I sound my age, but don't get me wrong–I love computers and revel in the ease with which 
data analysis is accomplished with a good interactive statistics package like SYSTAT and SYGRAPH ( 
Wilkinson, 1990 ). I am, however, appalled by the fact that some publishers of statistics packages 

file:///Users/dave/Desktop/Cohen%20Things%20I%20have%20learne.html (4 of 16) [1/6/2002 9:16:28 AM]



file:///Users/dave/Desktop/Cohen%20Things%20I%20have%20learne.html

successfully hawk their wares with the pitch that it isn't necessary to understand statistics to use them. But 
the same package that makes it possible for an ignoramus to do a factor analysis with a pull-down menu 
and the click of a mouse also can greatly facilitate with awesome speed and efficiency the performance of 
simple and informative analyses. 

A prime example of the simple-is-better principle is found in the compositing of values. We are taught 
and teach our students that for purposes of predicting a criterion from a set of predictor variables, 
assuming for simplicity (and as the mathematicians say, "with no loss of generality"), that all variables 
are standardized, we achieve maximum linear prediction by doing a multiple regression analysis and 
forming composite by weighting the predictor z scores by their betas. It can be shown as a mathematical 
necessity that with these betas as weights, the resulting composite generates a higher correlation with the 
criterion in the sample at hand than does a linear composite formed using any other weights. 

Yet as a practical matter, most of the time, we are better off using unit weights: +1 for positively related 
predictors, —1 for negatively related predictors, and 0, that is, throw away poorly related predictors ( 
Dawes, 1979 ; Wainer, 1976 ). The catch is that the betas come with guarantees to be better than the unit 
weights only for the sample on which they were determined. (It's almost like a TV set being guaranteed to 
work only in the store.) But the investigator is not interested in making predictions for that sample–he or 
she knows the criterion values for those cases. The idea is to combine the predictors for maximal 
prediction for future samples. The reason the betas are not likely to be optimal for future samples is that 
they are likely to have large standard errors. For the typical 100 or 200 cases and 5 or 10 correlated 
predictors, the unit weights will work as well or better. 

Let me offer a concrete illustration to help make the point clear. A running example in our regression text 
( Cohen & Cohen, 1983 ) has for a sample of college faculty their salary estimated from four independent 
variables: years since PhD, sex (coded in the modern manner–1 for female and 0 for male), number of 
publications, and number of citations. The sample multiple correlation computes to .70. What we want to 
estimate is the correlation we would get if we used the sample beta weights in the population, the cross-
validated multiple correlation, which unfortunately shrinks to a value smaller than the shrunken multiple 
correlation. For N = 100 cases, using Rozeboom's (1978) formula, that comes to .67. Not bad. But using 
unit weights, we do better: .69. With 300 or 400 cases, the increased sampling stability pushes up the 
cross-validated correlation, but it remains slightly smaller than the .69 value for unit weights. Increasing 
sample size to 500 or 600 will increase the cross-validated correlation in this example to the point at 
which it is larger than the unit-weighted .69, but only trivially, by a couple of points in the third decimal! 
When sample size is only 50, the cross-validated multiple correlation is only .63, whereas the unit 
weighted correlation remains at .69. The sample size doesn't affect the unit weighted correlation because 
we don't estimate unstable regression coefficients. It is, of course, subject to sampling error, but so is the 
cross-validated multiple correlation. 

Now, unit weights will not always be as good or better than beta weights. For some relatively rare 
patterns of correlation (suppression is one), or when the betas vary greatly relative to their mean, or when 
the ratio of sample size to the number of predictors is as much as 30 to 1 and the multiple correlation is as 
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large as .75, the beta weights may be better, but even in these rare circumstances, probably not much 
better. 

Furthermore, the unit weights work well outside the context of multiple regression where we have 
criterion data–that is, in a situation in which we wish to measure some concept by combining indicators, 
or some abstract factor generated in a factor analysis. Unit weights on standardized scores are likely to be 
better for our purposes than the factor scores generated by the computer program, which are, after all, the 
fruits of a regression analysis for that sample of the variables on the factor as criterion. 

Consider that when we go to predict freshman grade point average from a 30-item test, we don't do a 
regression analysis to get the "optimal" weights with which to combine the item scores–we just add them 
up, like Galton did. Simple is better. 

We are, however, not applying the simple-is-better principle when we "simplify" a multivalued graduated 
variable (like IQ, or number of children, or symptom severity) by cutting it somewhere along its span and 
making it into a dichotomy. This is sometimes done with a profession of modesty about the quality or 
accuracy of the variable, or to "simplify" the analysis. This is not an application, but rather a perversion of 
simple is better, because this practice is one of willful discarding of information. It has been shown that 
when you so multilate a variable, you typically reduce its squared correlation with other variables by 
about 36% ( Cohen, 1983 ). Don't do it. This kind of simplification is of a piece with the practice of 
"simplifying" a factorial design ANOVA by reducing all cell sizes to the size of the smallest by dropping 
cases. They are both ways of throwing away the most precious commodity we deal with: information. 

Rather more generally, I think I have begun to learn how to use statistics in the social sciences. 

The atmosphere that characterizes statistics as applied in the social and biomedical sciences is that of a 
secular religion ( Salsburg, 1985 ), apparently of Judeo—Christian derivation, as it employs as its most 
powerful icon a six-pointed cross, often presented multiply for enhanced authority. I confess that I am an 
agnostic. 

The Fisherian Legacy 

When I began studying statistical inference, I was met with a surprise shared by many neophytes. I found 
that if, for example, I wanted to see whether poor kids estimated the size of coins to be bigger than did 
rich kids, after I gathered the data, I couldn't test this research hypothesis, but rather the null hypothesis 
that poor kids perceived coins to be the same size as did rich kids. This seemed kind of strange and 
backward to me, but I was rather quickly acculturated (or, if you like, converted, or perhaps brainwashed) 
to the Fisherian faith that science proceeds only through inductive inference and that inductive inference 
is achieved chiefly by rejecting null hypotheses, usually at the .05 level. (It wasn't until much later that I 
learned that the philosopher of science, Karl Popper, 1959 , advocated the formulation of falsifiable 
research hypotheses and designing research that could falsify them .) 
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The fact that Fisher's ideas quickly became the basis for statistical inference in the behavioral sciences is 
not surprising–they were very attractive. They offered a deterministic scheme, mechanical and objective, 
independent of content, and led to clear-cut yes—no decisions. For years, nurtured on the psychological 
statistics textbooks of the 1940s and 1950s, I never dreamed that they were the source of bitter 
controversies ( Gigerenzer & Murray, 1987 ). 

Take, for example, the yes—no decision feature. It was quite appropriate to agronomy, which was where 
Fisher came from. The outcome of an experiment can quite properly be the decision to use this rather than 
that amount of manure or to plant this or that variety of wheat. But we do not deal in manure, at least not 
knowingly. Similarly, in other technologies–for example, engineering quality control or 
education–research is frequently designed to produce decisions. However, things are not quite so clearly 
decision-oriented in the development of scientific theories. 

Next, consider the sanctified (and sanctifying) magic .05 level. This basis for decision has played a 
remarkable role in the social sciences and in the lives of social scientists. In governing decisions about the 
status of null hypotheses, it came to determine decisions about the acceptance of doctoral dissertations 
and the granting of research funding, and about publication, promotion, and whether to have a baby just 
now. Its arbitrary unreasonable tyranny has led to data fudging of varying degrees of subtlety from 
grossly altering data to dropping cases where there "must have been" errors. 

The Null Hypothesis Tests Us 

We cannot charge R. A. Fisher with all of the sins of the last half century that have been committed in his 
name (or more often anonymously but as part of his legacy), but they deserve cataloging ( Gigerenzer & 
Murray, 1987 ; Oakes, 1986 ). Over the years, I have learned not to make errors of the following kinds: 

When a Fisherian null hypothesis is rejected with an associated probability of, for example, .026, it is not 
the case that the probability that the null hypothesis is true is .026 (or less than .05, or any other value we 
can specify). Given our framework of probability as long-run relative frequency–as much as we might 
wish it to be otherwise–this result does not tell us about the truth of the null hypothesis, given the data. 
(For this we have to go to Bayesian or likelihood statistics, in which probability is not relative frequency 
but degree of belief.) What it tells us is the probability of the data, given the truth of the null 
hypothesis–which is not the same thing, as much as it may sound like it. 

If the p value with which we reject the Fisherian null hypothesis does not tell us the probability that the 
null hypothesis is true, it certainly cannot tell us anything about the probability that the research or 
alternate hypothesis is true. In fact, there is no alternate hypothesis in Fisher's scheme: Indeed, he 
violently opposed its inclusion by Neyman and Pearson. 

Despite widespread misconceptions to the contrary, the rejection of a given null hypothesis gives us no 
basis for estimating the probability that a replication of the research will again result in rejecting that null 
hypothesis. 
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Of course, everyone knows that failure to reject the Fisherian null hypothesis does not warrant the 
conclusion that it is true. Fisher certainly knew and emphasized it, and our textbooks duly so instruct us. 
Yet how often do we read in the discussion and conclusions of articles now appearing in our most 
prestigious journals that "there is no difference" or "no relationship"? (This is 40 years after my N = 20 
friend used a nonsignificant result to demolish psychoanalytic theory.) 

The other side of this coin is the interpretation that accompanies results that surmount the .05 barrier and 
achieve the state of grace of "statistical significance." "Everyone" knows that all this means is that the 
effect is not nil, and nothing more. Yet how often do we see such a result to be taken to mean, at least 
implicitly, that the effect is significant , that is, important, large . If a result is highly significant, say p < 
.001, the temptation to make this misinterpretation becomes all but irresistible. 

Let's take a close look at this null hypothesis–the fulcrum of the Fisherian scheme–that we so earnestly 
seek to negate. A null hypothesis is any precise statement about a state of affairs in a population, usually 
the value of a parameter, frequently zero. It is called a "null" hypothesis because the strategy is to nullify 
it or because it means "nothing doing." Thus, "The difference in the mean scores of U.S. men and women 
on an Attitude Toward the U.N. scale is zero" is a null hypothesis. "The product—moment r between 
height and IQ in high school students is zero" is another. "The proportion of men in a population of adult 
dyslexics is .50" is yet another. Each is a precise statement–for example, if the population r between 
height and IQ is in fact .03, the null hypothesis that it is zero is false. It is also false if the r is .01, .001, or 
.000001! 

A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally 
(and that's the only way you can take it in formal hypothesis testing), is always false in the real world. It 
can only be true in the bowels of a computer processor running a Monte Carlo study (and even then a 
stray electron may make it false). If it is false, even to a tiny degree, it must be the case that a large 
enough sample will produce a significant result and lead to its rejection. So if the null hypothesis is 
always false, what's the big deal about rejecting it? 

Another problem that bothered me was the asymmetry of the Fisherian scheme: If your test exceeded a 
critical value, you could conclude, subject to the alpha risk, that your null was false, but if you fell short 
of that critical value, you couldn't conclude that the null was true. In fact, all you could conclude is that 
you couldn't conclude that the null was false. In other words, you could hardly conclude anything. 

And yet another problem I had was that if the null were false, it had to be false to some degree. It had to 
make a difference whether the population mean difference was 5 or 50, or whether the population 
correlation was .10 or .30, and this was not taken into account in the prevailing method. I had stumbled 
onto something that I learned after awhile was one of the bases of the Neyman—Pearson critique of 
Fisher's system of statistical induction. 

In 1928 (when I was in kindergarten), Jerzy Neyman and Karl Pearson's boy Egon began publishing 
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papers that offered a rather different perspective on statistical inference ( Neyman & Pearson, 1928a , 
1928b ). Among other things, they argued that rather than having a single hypothesis that one either 
rejected or not, things could be so organized that one could choose between two hypotheses, one of which 
could be the null hypothesis and the other an alternate hypothesis. One could attach to the precisely 
defined null an alpha risk, and to the equally precisely defined alternate hypothesis a beta risk. The 
rejection of the null hypotheses when it was true was an error of the first kind, controlled by the alpha 
criterion, but the failure to reject it when the alternate hypothesis was true was also an error, an error of 
the second kind, which could be controlled to occur at a rate beta. Thus, given the magnitude of the 
difference between the null and the alternate (that is, given the hypothetical population effect size), and 
setting values for alpha and beta, one could determine the sample size necessary to meet these conditions. 
Or, with the effect size, alpha, and the sample size set, one could determine the beta, or its complement, 
the probability of rejecting the null hypothesis, the power of the test. 

Now, R. A. Fisher was undoubtedly the greatest statistician of this century, rightly called "the father of 
modern statistics," but he had a blind spot. Moreover, he was a stubborn and frequently vicious 
intellectual opponent. A feud with Karl Pearson had kept Fisher's papers out of Biometrika , which Karl 
Pearson edited. After old-man Pearson retired, efforts by Egon Pearson and Neyman to avoid battling 
with Fisher were to no avail. Fisher wrote that they were like Russians who thought that "pure science" 
should be "geared to technological performance" as "in a five-year plan." He once led off the discussion 
on a paper by Neyman at the Royal Statistical Society by saying that Neyman should have chosen a topic 
"on which he could speak with authority" ( Gigerenzer & Murray, 1987 , p. 17). Fisher fiercely 
condemned the Neyman—Pearson heresy. 

I was of course aware of none of this. The statistics texts on which I was raised and their later editions to 
which I repeatedly turned in the 1950s and 1960s presented null hypothesis testing à la Fisher as a done 
deal, as the way to do statistical inference. The ideas of Neyman and Pearson were barely or not at all 
mentioned, or dismissed as too complicated. 

When I finally stumbled onto power analysis, and managed to overcome the handicap of a background 
with no working math beyond high school algebra (to say nothing of mathematical statistics), it was as if I 
had died and gone to heaven. After I learned what noncentral distributions were and figured out that it 
was important to decompose noncentrality parameters into their constitunts of effect size and sample size, 
I realized that I had a framework for hypothesis testing that had four parameters: the alpha significance 
criterion, the sample size, the population effect size, and the power of the test. For any statistical test, any 
one of these was a function of the other three. This meant, for example, that for a significance test of a 
product—moment correlation, using a two-sided .05 alpha criterion and a sample size of 50 cases, if the 
population correlation is .30, my long-run probability of rejecting the null hypothesis and finding the 
sample correlation to be significant was .57, a coin flip. As another example, for the same α = .05 and 
population r = .30, if I want to have .80 power, I could determine that I needed a sample size of 85. 

Playing with this new toy (and with a small grant from the National Institute of Mental Health) I did what 
came to be called a meta-analysis of the articles in the 1960 volume of the Journal of Abnormal and 
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Social Psychology ( Cohen, 1962 ). I found, among other things, that using the nondirectional .05 
criterion, the median power to detect a medium effect was .46–a rather abysmal result. Of course, 
investigators could not have known how underpowered their research was, as their training had not 
prepared them to know anything about power, let alone how to use it in research planning. One might 
think that after 1969, when I published my power handbook that made power analysis as easy as falling 
off a log, the concepts and methods of power analysis would be taken to the hearts of null hypothesis 
testers. So one might think. (Stay tuned.) 

Among the less obvious benefits of power analysis was that it made it possible to "prove" null 
hypotheses. Of course, as I've already noted, everyone knows that one can't actually prove null 
hypotheses. But when an investigator means to prove a null hypothesis, the point is not to demonstrate 
that the population effect size is, say, zero to a million or more decimal places, but rather to show that it is 
of no more than negligible or trivial size ( Cohen, 1988 , pp. 16—17). Then, from a power analysis at, 

say, α = .05, with power set at, say, .95, so that β = .05, also, the sample size necessary to detect this 
negligible effect with .95 probability can be determined. Now if the research is carried out using that 
sample size, and the result is not significant, as there had been a .95 chance of detecting this negligible 
effect, and the effect was not detected, the conclusion is justified that no nontrivial effect exists, at the β = 
.05 level. This does, in fact, probabilistically prove the intended null hypothesis of no more than a 
trivially small effect. The reasoning is impeccable, but when you go to apply it, you discover that it takes 
enormous sample sizes to do so. For example, if we adopt the above parameters for a significance test of a 
correlation coefficient and r = .10 is taken as a negligible effect size, it requires a sample of almost 1,300 
cases. More modest but still reasonable demands for power of course require smaller sample sizes, but not 
sufficiently smaller to matter for most investigators–even .80 power to detect a population correlation of 
.10 requires almost 800 cases. So it generally takes an impractically large sample size to prove the null 
hypothesis as I've redefined it; however, the procedure makes clear what it takes to say or imply from the 
failure to reject the null hypothesis that there is no nontrivial effect. 

A salutary effect of power analysis is that it draws one forcibly to consider the magnitude of effects. In 
psychology, and especially in soft psychology, under the sway of the Fisherian scheme, there has been 
little consciousness of how big things are. The very popular ANOVA designs yield F ratios, and it is 
these whose size is of concern. First off is the question of whether they made the sanctifying .05 cut-off 
and are thus significant, and then how far they fell below this cut-off: Were they perhaps highly 
significant ( p less than .01) or very highly significant (less than .001)? Because science is inevitably 
about magnitudes, it is not surprising how frequently p values are treated as surrogates for effect sizes. 

One of the things that drew me early to correlation analysis was that it yielded an r , a measure of effect 
size, which was then translated into a t or F and assessed for significance, whereas the analysis of 
variance or covariance yielded only an F and told me nothing about effect size. As many of the variables 
with which we worked were expressed in arbitrary units (points on a scale, trials to learn a maze), and the 
Fisherian schemed seemed quite complete by itself and made no demands on us to think about effect 
sizes, we simply had no language with which to address them. 
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In retrospect, it seems to me simultaneously quite understandable yet also ridiculous to try to develop 
theories about human behavior with p values from Fisherian hypothesis testing and no more than a 
primitive sense of effect size. And I wish I were talking about the long, long ago. In 1986, there appeared 
in the New York Times a UPI dispatch under the headline "Children's Height Linked to Test Scores." The 
article described a study that involved nearly 14,000 children 6 to 17 years of age that reported a definite 
link between height (age- and sex-adjusted) and scores on tests of both intelligence and achievement. The 
relationship was described as significant, and persisting, even after controlling for other factors, including 
socioeconomic status, birth order, family size, and physical maturity. The authors noted that the effect 
was small, but significant , and that it didn't warrant giving children growth hormone to make them taller 
and thus brighter. They speculated that the effect might be due to treating shorter children as less mature, 
but that there were alternative biological explanations. 

Now this was a newspaper story, the fruit of the ever-inquiring mind of a science reporter, not a journal 
article, so perhaps it is understandable that there was no effort to deal with the actual size of this small 
effect. But it got me to wondering about how small this significant relationship might be. Well, if we take 
significant to mean p < .001 (in the interest of scientific tough-mindedness), it turns out that a correlation 
of .0278 is significant for 14,000 cases. But I've found that when dealing with variables expressed in units 
whose magnitude we understand, the effect size in linear relationships is better comprehended with 
regression than with correlation coefficients. So, accepting the authors' implicit causal model, it works out 
that raising a child's IQ from 100 to 130 would require giving the child enough growth hormone to 
increase his or her height by 14 ft (more or less). If the causality goes the other way, and one wanted to 
create basketball players, a 4-in. increase in height would require raising the IQ about 900 points. Well, 
they said it was a small effect. (When I later checked the journal article that described this research, it 
turned out that the correlation was much larger than .0278. It was actually about .11, so that for a 30-point 
increase in IQ it would take only enough growth hormone to produce a 3.5-ft increase in height, or with 
the causality reversed, a 4-in. increase in height would require an increase of only 233 IQ points.) 

I am happy to say that the long neglect of attention to effect size seems to be coming to a close. The 
clumsy and fundamentally invalid box-score method of literature review based on p values is being 
replaced by effect-size-based meta-analysis as formulated by Gene Glass (1977) . The effect size measure 
most often used is the standardized mean difference d of power analysis. Several book-length treatments 
of meta-analysis have been published, and applications to various fields of psychology are appearing in 
substantial numbers in the Psychological Bulletin and other prestigious publications. In the typical meta-
analysis, the research literature on some issue is surveyed and the effect sizes that were found in the 
relevant studies are gathered. Note that the observational unit is the study. These data do not only provide 
an estimate of the level and variability of the effect size in a domain based on multiple studies and 
therefore on many observations, but by relating effect size to various substantive and methodological 
characteristics over the studies, much can be learned about the issue under investigation and how best to 
investigate it. One hopes that this ferment may persuade researchers to explicitly report effect sizes and 
thus reduce the burden on meta-analysts and others of having to make assumptions to dig them out of 
their inadequately reported research results. In a field as scattered (not to say anarchic) as ours, meta-
analysis constitutes a welcome force toward the cumulation of knowledge. Meta-analysis makes me very 
happy. 
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Despite my career-long identification with statistical inference, I believe, together with such luminaries as 
Meehl (1978) Tukey (1977) , and Gigerenzer ( Gigerenzer & Murray, 1987 ), that hypothesis testing has 
been greatly overemphasized in psychology and in the other disciplines that use it. It has diverted our 
attention from crucial issues. Mesmerized by a single all-purpose, mechanized, "objective" ritual in which 
we convert numbers into other numbers and get a yes—no answer, we have come to neglect close 
scrutiny of where the numbers came from. Recall that in his delightful parable about averaging the 
numbers on football jerseys, Lord (1953) pointed out that "the numbers don't know where they came 
from." But surely we must know where they came from and should be far more concerned with why and 
what and how well we are measuring, manipulating conditions, and selecting our samples. 

We have also lost sight of the fact that the error variance in our observations should challenge us to 
efforts to reduce it and not simply to thoughtlessly tuck it into the denominator of an F or t test. 

How To Use Statistics 

So, how would I use statistics in psychological research? First of all, descriptively. John Tukey's (1977) 
Exploratory Data Analysis is an inspiring account of how to effect graphic and numerical analyses of the 
data at hand so as to understand them . The techniques, although subtle in conception, are simple in 
application, requiring no more than pencil and paper (Tukey says if you have a hand-held calculator, 
fine). Although he recognizes the importance of what he calls confirmation (statistical inference), he 
manages to fill 700 pages with techniques of "mere" description, pointing out in the preface that the 
emphasis on inference in modern statistics has resulted in a loss of flexibility in data analysis. 

Then, in planning research, I think it wise to plan the research. This means making tentative informed 
judgments about, among many other things, the size of the population effect or effects you're chasing, the 
level of alpha risk you want to take (conveniently, but not necessarily .05), and the power you want 
(usually some relatively large value like .80). These specified, it is a simple matter to determine the 
sample size you need. It is then a good idea to rethink your specifications. If, as is often the case, this 
sample size is beyond your resources, consider the possibility of reducing your power demand or, perhaps 
the effect size, or even (heaven help us) increasing your alpha level. Or, the required sample may be 
smaller than you can comfortably manage, which also should lead you to rethink and possibly revise your 
original specifications. This process ends when you have a credible and viable set of specifications, or 
when you discover that no practicable set is possible and the research as originally conceived must be 
abandoned. Although you would hardly expect it from reading the current literature, failure to subject 
your research plans to power analysis is simply irrational. 

Next, I have learned and taught that the primary product of a research inquiry is one or more measures of 
effect size, not p values ( Cohen, 1965 ). Effect-size measures include mean differences (raw or 
standardized), correlations and squared correlation of all kinds, odds ratios, kappas–whatever conveys the 
magnitude of the phenomenon of interest appropriate to the research context. If, for example, you are 
comparing groups on a variable measured in units that are well understood by your readers (IQ points, or 
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dollars, or number of children, or months of survival), mean differences are excellent measures of effect 
size. When this isn't the case, and it isn't the case more often than it is, the results can be translated into 
standardized mean differences ( d values) or some measure of correlation or association ( Cohen, 1988 ). 
(Not that we understand as well as we should the meaning of a given level of correlation [ Oakes, 1986 , 
pp. 88—92]. It has been shown that psychologists typically overestimate how much relationship a given 
correlation represents, thinking of a correlation of .50 not as its square of .25 that its proportion of 
variance represents, but more like its cube root of about .80, which represents only wishful thinking! But 
that's another story.) 

Then, having found the sample effect size, you can attach a p value to it, but it is far more informative to 
provide a confidence interval. As you know, a confidence interval gives the range of values of the effect-
size index that includes the population value with a given probability. It tells you incidentally whether the 
effect is significant, but much more–it provides an estimate of the range of values it might have, surely a 
useful piece of knowledge in a science that presumes to be quantitative. (By the way, I don't think that we 
should routinely use 95% intervals: Our interests are often better served by more tolerant 80% intervals.) 

Remember that throughout the process in which you conceive, plan, execute, and write up a research, it is 
on your informed judgment as a scientist that you must rely, and this holds as much for the statistical 
aspects of the work as it does for all the others. This means that your informed judgment governs the 
setting of the parameters involved in the planning (alpha, beta, population effect size, sample size, 
confidence interval), and that informed judgment also governs the conclusions you will draw. 

In his brilliant analysis of what he called the "inference revolution" in psychology, Gerd Gigerenzer 
showed how and why no single royal road of drawing conclusions from data is possible, and particularly 
not one that does not strongly depend on the substantive issues concerned–that is, on everything that went 
into the research besides the number crunching. An essential ingredient in the research process is the 
judgment of the scientist. He or she must decide by how much a theoretical proposition has been 
advanced by the data, just as he or she decided what to study, what data to get, and how to get it. I believe 
that statistical inference applied with informed judgment is a useful tool in this process, but it isn't the 
most important tool: It is not as important as everything that came before it. Some scientists, physicists 
for example, manage without the statistics, although to be sure not without the informed judgment. 
Indeed, some pretty good psychologists have managed without statistical inference: There come to mind 
Wundt, Kohler, Piaget, Lewin, Bartlett, Stevens, and if you'll permit me, Freud, among others. Indeed, 
Skinner (1957) thought of dedicating his book Verbal Behavior (and I quote) "to the statisticians and 
scientific methodologists with whose help this book would never have been completed" (p. 111). I submit 
that the proper application of statistics by sensible statistical methodologists (Tukey, for example) would 
not have hurt Skinner's work. It might even have done it some good. 

The implications of the things I have learned (so far) are not consonant with much of what I see about me 
as standard statistical practice. The prevailing yes—no decision at the magic .05 level from a single 
research is a far cry from the use of informed judgment. Science simply doesn't work that way. A 
successful piece of research doesn't conclusively settle an issue, it just makes some theoretical proposition 
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to some degree more likely. Only successful future replication in the same and different settings (as might 
be found through meta-analysis) provides an approach to settling the issue. How much more likely this 
single research makes the proposition depends on many things, but not on whether p is equal to or greater 
than .05; .05 is not a cliff but a convenient reference point along the possibility—probability continuum. 
There is no ontological basis for dichotomous decision making in psychological inquiry. The point was 
neatly made by Rosnow and Rosenthal (1989) last year in the American Psychologist . They wrote 
"surely, God loves the .06 nearly as much as the .05" (p. 1277). To which I say amen! 

Finally, I have learned, but not easily, that things take time. As I've already mentioned, almost three 
decades ago, I published a power survey of the articles in the 1960 volume of the Journal of Abnormal 
and Social Psychology ( Cohen, 1982 ) in which I found that the median power to detect a medium effect 
size under representative conditions was only .46. The first edition of my power handbook came out in 
1969. Since then, more than two dozen power and effect-size surveys have been published in psychology 
and related fields ( Cohen, 1988 , pp. xi—xii). There have also been a slew of articles on power-analytic 
methodology. Statistics textbooks, even some undergraduate ones, give some space to power analysis, 
and several computer programs for power analysis are available (e.g. Borenstein & Cohen, 1988 ). They 
tell me that some major funding entities require that their grant applications contain power analyses, and 
that in one of those agencies my power book can be found in every office. 

The problem is that, as practiced, current research hardly reflects much attention to power. How often 
have you seen any mention of power in the journals you read, let alone an actual power analysis in the 
methods sections of the articles? Last year in Psychological Bulletin , Sedlmeier and Gigernzer (1989) 
published an article entitled "Do Studies of Statistical Power Have an Effect on the Power of Studies?". 
The answer was no. Using the same methods I had used on the articles in the 1960 Journal of Abnormal 
and Social Psychology ( Cohen, 1962 ), they performed a power analysis on the 1984 Journal of 
Abnormal Psychology and found that the median power under the same conditions was .44, a little worse 
than the .46 I had found 24 years earlier. It was worse still (.37) when they took into account the 
occasional use of an experimentwise alpha criterion. Even worse than that, in some 11% of the studies, 
research hypotheses were framed as null hypotheses and their nonsignificance interpreted as 
confirmation. The median power of these studies to detect a medium effect at the two-tailed .05 level was 
.25! These are not isolated results: Rossi, Rossi, and Cottrill (in press) , using the same methods, did a 
power survey of the 142 articles in the 1982 volumes of the Journal of Personality and Social Psychology 
and the Journal of Abnormal Psychology and found essentially the same results. 

A less egregious example of the inertia of methodological advance is set correlation, which is a highly 
flexible realization of the multivariate general linear model. I published it in an article in 1982, and we 
included it in an appendix in the 1983 edition of our regression text ( Cohen, 1982 ; Cohen & Cohen, 
1983 ). Set correlation can be viewed as a generalization of multiple correlation to the multivariate case, 
and with it you can study the relationship between anything and anything else, controlling for whatever 
you want in either the anything or the anything else, or both. I think it's a great method; at least, my 
usually critical colleagues haven't complained. Yet, as far as I'm aware, it has hardly been used outside 
the family. (The publication of a program as a SYSTAT supplementary module [ Cohen, 1989 ] may 
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make a difference.) 

But I do not despair. I remember that W. S. Gosset, the fellow who worked in a brewery and appeared in 
print modestly as "Student," published the t test a decade before we entered World War I, and the test 
didn't get into the psychological statistics textbooks until after World War II. 

These things take time. So, if you publish something that you think is really good, and a year or a decade 
or two go by and hardly anyone seems to have taken notice, remember the t test, and take heart. 
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